Minimally Invasive and Novel Therapeutics (M.I.N.T.) in Foregut Disease September 29th -October 1st 2022

Antireflux mucosal ablation and antireflux mucosectomy: Hype or Hope for GERD

Enrique Rodriguez de Santiago, FESGE ESGE green endoscopy WG

Hospital Universitario Ramon y Cajal, Madrid, Spain

Conflict of interest statement

I herewith declare anything that may potentially be viewed as a conflict of interest during the past three years such as paid or unpaid consultancies, business interests or sources of honoraria payments:

Olympus: speaker fee and educational activities Norgine: registration fee for educational activities Casen: registration fee for educational activities

Endoscopic treatment for GERD

Antireflux mucosectomy (ARMS) and antireflux mucosal ablation (ARMA)

ARMS

ARMA

Inoue. Annals of Gastroenterology. 2014 Inoue. Endosc Int Open. 2020 Hernández Mondragón. Gastrointest Endosc. 2020

Antireflux mucosectomy (ARMS) and antireflux mucosal ablation (ARMA)

ARMS

ARMA

Inoue. Annals of Gastroenterology. 2014 Inoue. Endosc Int Open. 2020 Hernández Mondragón. Gastrointest Endosc. 2020

IDEAL ENDOSCOPIC GERD THERAPY

Effective

Simple

Safe

Cheap

Rescue surgery

ARMS AND ARMA??

Effective

Simple

Safe

Cheap

Rescue surgery

ARMS AND ARMA??

Antireflux mucosectomy (ARMS) and antireflux mucosal ablation (ARMA) for gastroesophageal reflux disease: a systematic review and meta-analysis

@**!**\$=

Authors

Enrique Rodríguez de Santiago^{*, 1}, Carlos Teruel Sanchez-Vegazo^{*, 1}, Beatriz Peñas¹, Yuto Shimamura², Mayo Tanabe², Noelia Álvarez-Díaz³, Sofía Parejo¹, Sumi Kazuya², Natalia Marcos-Carrasco¹, Enrique Vazquez-Sequeiros¹, Haruhiro Inoue², Agustín Albillos¹

Rodriguez de Santiago E. Endosc Int Open. 2021

POPULATION

- 15 non-randomized studies:
- N = 461:
 - ARMS, n = 331
 - ARMA, n = 130

Short-term (≤ 6 months) = 78%

	%		
Study	ES (95% CI) Weight	n	Ν
Debourdeau (2020)		5	6
Patil (2020)	0.69 (0.57, 0.79) 10.96	43	62
Wong (2020)	● 0.91 (0.76, 0.97) 8.90	30	33
Yoo (2020)	• 0.64 (0.47, 0.78) 8.90	21	33
Sumi (2020)	0.69 (0.59, 0.78) 11.88	61	88
Monino (2020)	0.76 (0.55, 0.89) 7.27	16	21
Hernandez-Mondragon (2020)	0.89 (0.82, 0.94) 12.35	96	108
Hernandez-Mondragon (2020)	0.83 (0.44, 0.97) 3.33	5	6
Inoue (2020)	0.58 (0.32, 0.81) 5.31	7	12
Ota (2014)	• 0.92 (0.67, 0.99) 5.57	12	13
Mohan (2019)	0.73 (0.43, 0.90) 5.03	8	11
Ortega (2019)	● 1.00 (0.51, 1.00) 2.47	4	4
Shah (2017)	0.58 (0.32, 0.81) 5.31	7	12
Bapaye (2017)	• 0.73 (0.48, 0.89) 6.06	11	15
Vasilevskyi (2017)	0.67 (0.30, 0.90) 3.33	4	6
Overall (I^2 = 54.2%, p = 0.006)	0.78 (0.70, 0.85) 100.00		

1-year = 72%

CLINICAL SUCCESS

Significant improvement in esophagitis at endoscopy

HARVARD

MEDICAL SCHOOL

14%

Significant reduction AET% and DeMeester score

Mean difference = 12%

Mean difference = 40%

Rodriguez de Santiago E. Endosc Int Open. 2021

IDEAL ENDOSCOPIC GERD THERAPY Effective Simple Safe Cheap **Rescue surgery**

IDEAL ENDOSCOPIC GERD THERAPY

Rescue surgery

Cheap

Effective

Simple

Safe

ARMS AND ARMA

Technical success = 100% (CI 95% 100% - 100%)

Rodriguez de Santiago E. Endosc Int Open. 2021

KEY TECHNICAL TIPS

HOW TO?

Consider using a cap

KEY TECHNICAL TIPS

Horse-shoe shape: 270° - 320°

Spare the Z line and 1 - 1.5 cm at the greater curvature

1 scope width of healthy mucosa at the greater curvature

ANTIREFLUX MUCOSAL ABLATION (ARMA)

ARMA design

Preserve at least 1cm of mucosa at the greater curvature.

Keep approximately 1 cm away from the Z line.

Ablate in horse-shoe shape with width of approximately 1-2cm

ANTIREFLUX MUCOSECTOMY (ARMS)

ARMS AND ARMA

Before ARMS

Before ARMA

ARMA

After 1 month

After 1 month

IDEAL ENDOSCOPIC GERD THERAPY 5 Effective Simple Safe Cheap **Rescue surgery**

SAFETY

Adverse events = 11%

		%		
Study	ES (95% CI)	Weight	n	Ν
Debourdeau (2020)	0.33 (0.10, 0.70)	1.42	2	6
Patil (2020)	0.16 (0.09, 0.27)	13.63	10	62
Nong (2020)	0.15 (0.07, 0.31)	7.31	5	33
Yoo (2020)	0.06 (0.02, 0.20)	7.31	2	33
Sumi (2020)	0.15 (0.09, 0.23)	23.88	16	109
Monino (2020)	0.19 (0.08, 0.40)	4.69	4	21
Hernandez-Mondragon (2020)	0.17 (0.11, 0.25)	23.66	18	108
Hernandez-Mondragon (2020)	0.00 (0.00, 0.39)	1.42	0	6
noue (2020)	0.08 (0.01, 0.35)	2.73	1	12
Ota (2014)	0.08 (0.01, 0.33)	2.94	1	13
Mohan (2019)	0.00 (0.00, 0.26)	2.51	0	11
Ortega (2019)	0.00 (0.00, 0.49)	0.98	0	4
Shah (2017)	0.00 (0.00, 0.24)	2.73	0	12
Bapaye (2017)	0.20 (0.07, 0.45)	3.38	3	15
Vasilevskyi (2017)	0.00 (0.00, 0.39)	1.42	0	6
Overall (I^2 = 0.0%, p = 0.454)	0.11 (0.08, 0.15)	100.00		
i i i i i i i i i i i i i i i i i i i				

Hernández Mondragón OV. Gastrointest Endosc.2020

No large RCTs

Heterogenous GERD population

Limited to patients without hiatal hernia (< 2 cm)

No long-term follow-up

ARMS and ARMA are not included in guidelines

RECOMMENDATION

ESGE recommends against the use of antireflux mucosectomy (ARMS) in routine clinical practice in the treatment of GERD because of the lack of data and its potential complications.

Strong recommendation, low quality evidence, level of agreement 100%.

Randomized controlled trials

Randomised controlled trials

ARMA in PPI dependant GERD

ClinicalTrials.gov Identifier: NCT04711655

Recruitment Status (1): Recruiting First Posted (1): January 15, 2021 Last Update Posted (1): September 8, 2021

See Contacts and Locations

ARMA vs ARMS

ClinicalTrials.gov Identifier: NCT05422404

Recruitment Status ① : Not yet recruiting First Posted ① : June 16, 2022 Last Update Posted ① : June 16, 2022

ClinicalTrials.gov Identifier: NCT04036942

Recruitment Status ①: Recruiting First Posted ①: July 30, 2019 Last Update Posted ①: July 22, 2022

1. Nonrandomized studies indicate that ARMS and ARMA are feasible, safe, and effective for patients with GERD without hiatal hernia.

2. ARMS and ARMA will likely become a reality for some patients with GERD, but results from RCTs with long-term follow-up are still needed.

GREEN ENDOSCOPY

Online education reduce CO2 emission

1000 kg = 2.200 pounds CO2

GREEN ENDOSCOPY

Online education reduce CO2 emission

Position Statement

Thieme

Reducing the environmental footprint of gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastroenterology and Endoscopy **Nurses and Associates (ESGENA) Position Statement**

BECOME AN "ECO-ENDOSCOPIST"

Rodriguez de Santiago E. Endoscopy. 2022

